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Theoretical and Numerical Solutions of Linear and 
Nonlinear Elastic Waves in a Thin Rod 

Minghao Cai,1 S.-T. John Yu,2 and Moujin Zhang3 
The Ohio State University, Columbus, Ohio, 43202 

In this paper, we report theoretical and numerical solutions of linear and nonlinear elastic 
waves in a thin rod. First, the classical solution of linear elastic wave in a thin rod is adapted 
such that it is ready to be compared with the numerical solution of a nonlinear formulation. 
Based on mass and momentum conservation, we then derive several forms of modeling 
equations for nonlinear elastic waves, including the contraction/expansion effect of the cross 
section of the thin rod. We then analyze the eigen-system of the nonlinear equations to show 
that the system is hyperbolic because the eigenvalues of the Jacobian matrices are real. 
Analytical forms of eigenvectors and Riemann invariants along characteristic lines are also 
derived. For numerical solutions, we identify a suitable conservative form, which is then 
solved by the space-time Conservation Element and Solution Element (CESE) method. 
Comparison between the numerical solution and the analytical solution is reported.  

I. Introduction 
O model stress wave propagation in solids, standard text books 1-10 focus on linear elastic waves. The model 
equation is a second-order wave equation in terms of material displacement. For nonlinear stress waves, the 

discussions have been focused nonlinear material response to elastic waves with emphasis on constructing complex 
constitutive relations. 

 The present paper focuses on a second category of the nonlinear waves, in which the material deformation is 
significant and the above approach of using a second-order wave equation is unsuitable. Instead, one has to solve the 
conservation laws, including conservation of mass, momentum, and even energy if severe impact is of concern. In 
particular, the nonlinear convective terms in the model equations must be included. The resultant modeling 
equations are a set of first-ordered, fully coupled, and nonlinear hyperbolic partial differential equations. The 
simplest first-ordered, hyperbolic equations for one-dimensional stress waves in a bulk material was presented by 
Bedford and Drumheller 3 and Drumheller 4. The equation set includes the mass and momentum conservation 
equations: 
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where ρ  is density, u is velocity, and ( )0 1Eσ ρ ρ= −  is the Cauchy stress, expressed by a linear elastic relation 
with 0ρ  as the initial density of the material.  Alternatively, the hyperbolic equations for stress wave in solids could 
include the momentum conservation equation and a linear elastic constitutive equation 11-13:   
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Equation (3) is identical to Eq. (2) if ρ = constant. Equation (4) is obtained by first applying the time derivative to 
the constitutive equation Eσ ε=  for a linear elastic material, and then letting t u xε∂ ∂ =∂ ∂ . Both forms of the 
equations could be recast into a vector form:  

 0
t x

∂ ∂
+ =

∂ ∂
U UA .  (5) 

The unknown vector ( ), Tuρ ρ=U  for Eqs. (1) and (2), and ( ), Tu σ=U for Eqs. (3) and (4).  The eigenvalues of the 
Jacobian matrix A for Eqs. (1) and (2) are 

 1,2 2
oE

u
ρ

λ
ρ

= ± .   

Both eigenvalues are real and the speed of sound of the solid is 2
oEρ ρ . Thus, the equation set is hyperbolic in 

time. Moreover, the equations are nonlinear because the eigenvalues are functions of the unknowns ρ and uρ . For 
Eqs. (3) and (4), the eigenvalues of matrix A are  

 1,2
Euλ
ρ

= ± .   

Again, both eigenvalues are real and the speed of sound of the solid is E ρ . The eigenvalues here are identical to 
that of Eqs. (1) and (2) with ρ = constant. 
             The above one-dimensional equations can be straightforwardly extended for problems in multiple spatial 
dimensions. The above simple constitutive equation for linear elastic mediums could also be extended for wave 
propagation in elastic-plastic materials. Moreover, one could also add the energy equation for impact problems at 
very high strain rate. Kulikovskii et al. 7 presented a nonlinear hyperbolic system for elastic-plastic problems, 
including mass, momentum, and energy conservation equations. In addition, a set of transport equations for 
deviatoric stress components were also included. These equations were obtained by applying the objective time 
derivative, D/Dt, to the elastic/plastic constitutive relation that embodies the material behavior. To close the model 
equations, an Equation of State (EOS) was included to relate temperature to pressure and density.    

 The first-order hyperbolic model equations are versatile and can be used to describe a wide range of waves in 
solids, including seismic waves in the earth and ultrasonic waves in biological tissues. Since the model equations 
directly include the nonlinear convective terms, one could also use these equations to model shock waves. In 
particular, the same set of the model equations could simultaneously describe nonlinear waves with large 
deformation and linear elastic waves, which tend to coexist with nonlinear deformations in solids.  

 The main challenge in employing the above hyperbolic equations is the development of viable numerical 
methods for time-accurate solutions. Conventional finite-volume method in conjunction with a Riemann solver has 
been used to solve this system of equations. When shock waves and contact discontinuity are of interest, a limiter 
functions is employed to treat the jump conditions. The original framework was developed by Godunov 14. Recent 
development of modern upwind schemes is an extension to the Godunov method in the following three aspects: (i) 
extension to second or higher order in both spatial and temporal resolution; (ii) development of more efficient 
approximate Riemann solvers; and (iii) development of sophisticated limiter functions for crisp resolution of jump 
conditions. 

 Colella 15 and Miller and Colella 16 presented an second-ordered Godunov method for direct calculations of 
waves in solids. Operator splitting was not applied in the two- and three-dimensional problems. The equations were 
written in non-conservative form, and deformation tensor was solved. Trangenstein 17, 18, and Trangenstein and 
Pember 19 developed a second-order extension of the Godunov method for impact problems involving multiple 
materials. Lin and Ballmann 13 used Zwas’ method 20 and reported numerical solutions of wave propagation around 
a crack. They combined the method of bi-characteristics and a finite-difference scheme for a second-order Godunov 
scheme 13. They validated their method by applying it to an anti-plane shear problem, a plane-strain problem 13, and 
an axisymmetric stress wave propagation 13. They also provided an extensive review of simulating stress waves in 
solids  13.  LeVeque 21 used CLAWPACK and reported numerical solutions of multi-dimensional waves in solids. 
Udaykumar et al. 22 employed an ENO scheme and an interface tracking technique to calculate the problem of a 
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tungsten rod impacting a steel plate. Fey 23, 24 proposed the method of transport, which does not rely on the use of a 
Riemann solver. The method was designed based on the concept of consistency of a set of wave vectors.  

 Owing to its simplicity and available analytical solution, one-dimensional elastic wave solutions often served 
as a reference to validate new numerical methods. In particular, when solving these one-dimensional nonlinear 
hyperbolic equations for linear elastic waves, the solutions must coincide with the classical solutions of the second-
order wave equations. In the present paper, we plan to focus on the analytical and numerical solution of one-
dimensional elastic wave in a thin rod. We remark that all existing one-dimensional, first-order hyperbolic model 
equations for elastic waves in solids describe longitudinal waves in bulk materials. For waves in a thin rod, although 
classical solutions based on solving the second-order wave equations have been ample, the solutions of the first-
order model equations and analysis of the eigen-system have been scant. The present paper will present detailed 
derivation of the model equations, including the characteristic form, the non-conservative form, and the conservative 
form.    

 For numerical solutions, we will employ the space-time Conservation Element and Solution Element (CESE) 
method. Developed by Chang 25, the CESE method is a novel numerical framework for hyperbolic conservation 
laws. The tenet of the CESE method is a uniform treatment of space and time for flux conservation. Contrast to the 
modern upwind method, no Riemann solver or reconstruction step is used as a building block of the CESE method 
and the logic and operational count of the CESE method are simpler and more efficient. Based on the CESE method, 
a suite of computer one-, two-, and three-dimensional codes using structured and unstructured meshes have been 
developed. The two- and three-dimensional codes have been parallelized and can be used for large-scaled 
simulations.  Previously, Yu and coworkers 25-34, have reported a wide range of highly accurate solutions of 
hyperbolic systems, including detonations, cavitations, complex shock waves, turbulent flows with embedded dense 
sprays, dam breaking flows, MHD flows, and aero acoustics. Detailed algebra of the method has been extensively 
illustrated in the cited references. For conciseness, only the basic ideas of the CESE method in one spatial domain 
will be illustrated in the present paper.  
  The rest of this paper is organized in the following sections. Section 2 describes the problem of elastic wave 
propagating in a thin rod and presents the analytical solution based on solving the second-order wave equation. 
Section 3 illustrates the first-order model equations for nonlinear elastic waves in a thin rod. The eigen-system of the 
equation set is also derived. In Section 4, the CESE method for one-dimensional problems is illustrated. Section 5 
provides results and discussions. We then provide the conclusion and the cited references. 

II. Analytical Solution of Elastic Waves in a Thin Rod 
Analytical solutions for linear waves in solids have been ample, e.g., Graff 5, Kolsky 6 and Meirovitch 35. By using 
approximate Mindlin-Herrmann theory, Miklowitz 36 showed the analytical solution of elastic waves in a thin rod. 
He solved the problem of semi-infinite rod subject to a step pressure in the axial direction. He also solved waves in 
an infinite rod subject to an axial pressure load at the initial condition. In the present paper, Miklowitz’s solution is 
adapted. Instead of a step function, we will use a sinusoidal function as the imposed vibrations on one end of the thin 
rod. 

 As shown in Figure 1, we consider a metal rod in a horizontal position. At x=0, the rod is fixed without 
motion. At x=l, an arbitrary force ( ),f x t is imposed in the following manner:  

 ( ) ( ) ( ),f x t F t x lδ= − , (6) 

where ( )F t  assumes the form of  

 ( )( ) cos 2B aF t A ftσ π= − , (7) 

and ( )x lδ −  is a Dirac delta function:  

 ( ) ( )
0

0 for   and  1
l

x l x l x l dxδ δ− = ≠ − =∫ . (8) 
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Figure 1: A schematic for linear and nonlinear waves in a thin rod. 

For linear elastic waves in the thin rod, the model equation and the associated boundary conditions are 
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δ
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= =
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where h(x, t) is the axial displacement, E is the Young’s modulus, Aa is the cross section area of the rod, and ml is 
the mass of the thin rod per unit length. In this classical formulation, E, Aa and ml are constant. Based on Eq. (9), the 
wave speed is 

 a

l

EA Ec
m ρ

= = . (11) 

With a boundary force in the form of a step function, Meirovitch 35 presented the analytical solution of Eqs. (9) and 
(10).  In a similar manner, we will derive the solution of Eq. (9) with the boundary conditions shown in Eqs. (6), (7), 
and (10). Details of the analysis are included in Appendix A.  The final solution of the stress is 
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where  

 ( )
2

2 1
2r

r E
L

π
ϖ

ρ

−
= . (13) 

This analytical solution will be used for model and code validation in the following sections. 

III. Model Equations Based on Conservation Laws  
In this section, we derive the one-dimensional model equations for nonlinear elastic waves in a thin rod. Although 
the problem is assumed one-dimensional, we have to consider lateral contraction/expansion effect in the thin rod. To 
proceed, we consider the following mass and momentum conservation laws in three spatial dimensions: 

 
( ) ( ) ( )

0
u v w

t x y z
ρ ρ ρρ ∂ ∂ ∂∂

+ + + =
∂ ∂ ∂ ∂

, (14) 

 
( ) ( ) ( ) ( )1311 12 0

uw Tu uu T uv T
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ρρ ρ ρ ∂ −∂ ∂ − ∂ −
+ + + =

∂ ∂ ∂ ∂
, (15) 

 
( ) ( ) ( ) ( )2321 22 0

vw Tv uv T vv T
t x y z

ρρ ρ ρ ∂ −∂ ∂ − ∂ −
+ + + =

∂ ∂ ∂ ∂
, (16) 

 
( ) ( ) ( ) ( )31 32 33 0

uw T wv T ww Tw
t x y z

ρ ρ ρρ ∂ − ∂ − ∂ −∂
+ + + =

∂ ∂ ∂ ∂
, (17) 

where ρ is density, u, v, and w are the velocity components in the x, y, and z directions, respectively, and 
,  , 1,2,3ijT i j = are components of Cauchy stress tensor. For an isotropic material, Hook’s law in a general form 

gives  
 ( ) 2ij ii ij ijT λ ε δ µε= + , (18) 
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where ijε  is the ( ),i j component of the strain tensor and added by summation convention ( ) 11 22 33iiε ε ε ε= + + , 
and λ and µ are Lame’s constants with µ  as the shear modulus.  

 To proceed, consider one-dimensional longitudinal waves propagating in the thin rod, and the Cauchy stress 
T and the strain ε  are  

 
11 11 11

22 11

33 11

0 0 0 0 0 0
0 0 0 ,    and   0 0 0 0
0 0 0 0 0 0 0

T
v

v

ε ε
ε ε

ε ε

    
    = = = −    
    −    

T ε . (19) 

where ν is the Poisson ratio:  

  
( )2
λν
λ µ

=
+

. (20) 

Aided by Hook’s law, Eq. (18), and the strain tensor, Eq. (19), we have 
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The normal components of the strain tensor are not independent. They are constrained by  

 22 33 11
λε ε ε

λ µ
+ = −

+
. (21) 

Thus, 11T  can be expressed as  
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 Next, we consider the relation between velocity components. To be consistent with the strain shown in Eq. 
(19) with lateral contraction and expansion, the velocity components must satisfy the following relations:  

 ,   and   .v u w u
y x z x

ν ν∂ ∂ ∂ ∂
= − = −

∂ ∂ ∂ ∂
 (23) 

Therefore, v and w are functions of y and z, respectively. To recap, for longitudinal wave in a thin rod, we could 
assume the following  
 ( ), ,   ( , ),    ( , , ),    ( , , )x t u u x t v v x y t w w x z tρ ρ= = = =  (24) 

 To further investigate the role of v and w in the model equations, we consider the strain tensor 

 1    , 1,2,3
2

ji
ij

j i

dd
i j

x x
ε

 ∂∂
= + =  ∂ ∂ 

 (25) 

where id  is a displacement component, and the components of symmetric part of gradient of velocity tensor D 

 1    , 1, 2,3
2
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vv
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x x
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Note that here 1 2 3 1 2 3, , , , ,v u v v v w x x x y x z= = = = = = . Obviously,  

 ij
ij

d
D

dt
ε

=  (27) 

Equation (19) shows that 12 0ε = . Thus 12 0D = . Aided by u=u(x,t), i.e., Eq. (24), and following definition 

 12
1
2

u vD
y x

 ∂ ∂
= + ∂ ∂ 

, (28) 

we have 0v x∂ ∂ = , i.e. the velocity component v is not a function of x. Instead, ( , )v v y t= . Similarly, we 
have ( , )w w z t= . To recap, Eq. (24) can be updated as   
 ( ), ,   ( , ),    ( , ),    ( , )x t u u x t v v y t w w z tρ ρ= = = =  (29) 
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 To proceed, we substitute the relations of Eqs. (19) and (23) into Eqs. (14)- (17) and obtain the following 
equations:  

 
u

u
t x x
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λ µρ λ ρ
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t x x

µ λ ρ
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Lai et al.37 show that the initial density 0ρ , the current density ρ , and the gradient of deformation F are connected 
by  

 0 det
ρ
ρ

= F . (34) 

For a thin rod,  
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0 0 1

ε
ε

ε

+ 
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Aided by Eqs. (21) and (35), we have 

 2 3
11 11 11 11det 1 1µ µ µε ε ε ε

λ µ λ µ λ µ
= + + + ≈ +

+ + +
F   (36) 

Aided by Eqs. (34) and (36),  we have 

 0
11 1

ρλ µε
µ ρ

 +
= − 

 
  (37) 

Aided by Eq. (37), T11 in Eq. (31) can be recast as a function of ρ only:  

 
( ) ( )0 0 0
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, (38) 

where the bulk modulus k is  

 2
3

k λ µ= +  (39)  

Because 11T  in Eq. (38) is a function of ρ  only, the y and z momentum equations, Eqs. (32) and (33), are decoupled 
from the continuity equation, Eq. (30), and the x-momentum equation, Eq. (31). Therefore, Eqs. (30) and (31) form 
a closed system of two equations in terms of two unknowns, ρ and u. After manipulation, we have 

 0uu
t x x
ρ ρ µ ρ

λ µ
∂ ∂ ∂

+ + =
∂ ∂ + ∂

 (40)  

 ( ) 33 2 0ou uu
t x x

ρ ρλ µ
ρ

∂ ∂ ∂
+ + + =

∂ ∂ ∂
 (41)  

We then recast these two equations into a vector form:  

 
t x

∂ ∂
+ =

∂ ∂
U UA 0  (42) 

where  
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u
ρ 

=  
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µ ρ
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λ µ ρ

ρ

 
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 +
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The eigenvalues of the coefficient matrix A  is obtained by solving ( )det 0λ− =A I :   

 0
1,2 2

E
u u c

ρ
λ

ρ
= ± = ± ,  and  0

2
E

c
ρ
ρ

= . (44) 

where c is the speed of the sound. The eigenvalues are real and distinct and the system equations are hyperbolic. The 
eigenvalues are functions of the unknowns ρ and u. Thus, the equations are nonlinear. The associated eigenvectors 
could be obtained by solving the equation 
 ( )      1, 2i

i iλ− = =A I m 0  (45) 

These two column eigenvectors are  

 ( ) 01 1 1
1 2 2, 1,

T
T E

m m
ρλ µ

µ ρ

 + = =
 
 

m  

 ( ) 02 2 2
1 2 2, 1,

T
T E

m m
ρλ µ

µ ρ

 + = = −
 
 

m  

The right eigen-matrix M  is composed of the two column vectors:  

 0 0
2 2

1 1

E Eρ ρλ µ λ µ
µ µρ ρ

 
 

= + + − 
 

M  (46) 

Its inverse is denoted 1−M which can be readily found as  

 
( )

( )

2

01
2

0

1
2 2

1
2 2

E

E

µ ρ
λ µ ρ

µ ρ
λ µ ρ

−

 
 

+ 
=  
 − + 

M  (47) 

To proceed, we derive the characteristic-form equations by pre-multiplying Eq. (42) by 1−M : 

 1 1 1

t x
− − −∂ ∂

+ =
∂ ∂
U UM M AMM 0 . (48) 

Note that we insert an identity matrix 1−=Ι MM in the convective term. Equation (48) can be expressed as   

 
ˆ ˆ

t x
∂ ∂

+ =
∂ ∂
U UΛ 0 , (49) 

where the diagonal matrix Λ is   

 

0
2

11

2 0
2

0
0

0
0

E
u

E
u

ρ
ρλ

λ ρ
ρ

−

 
+ 

   
= = =   

   − 
 

Λ M AM . (50) 

The characteristic variables are 
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( )

( )

2

011
2

2

0

1
2 2ˆˆ

ˆ 1
2 2

u
Eu

u u
E

µ ρρ
λ µ ρ

µ ρρ
λ µ ρ

−

 
+ 

+  
= = =   

   − + 

U M U  (51) 

In the setting of the Method Of Characteristics (MOC), Eqs. (49)-(51) constitute the analytical solution of the 
nonlinear equations for elastic waves in a thin rod.  In the x-t plane, along the characteristic lines 1,2dx dt λ= , the 
Riemann invariants 1,2û are constant:  

 
ˆ

ˆ 0,     1, 2i
i i

du
u i

dt t x
λ∂ ∂ = + = = ∂ ∂ 

 (52) 

Specifically, along the right running wave 

 0
2

Edx u
dt

ρ
ρ

= +  

we have  

 
( )

2

0

1
2 2

u
E

µ ρρ
λ µ ρ

+
+

= constant.   

Similarly, along the left running wave  

 0
2

Edx u
dt

ρ
ρ

= − ,   

we have  

 
( )

2

0

1
2 2

u
E

µ ρρ
λ µ ρ

−
+

= constant.   

Direct integration along the right and left characteristic lines renders the complete analytical solution of nonlinear 
elastic waves in a thin rod.  Moreover, since the analytical form of the MOC equations are derived, the boundary 
condition treatments at the two ends of the thin rod can also be readily obtained by following the characteristic 
waves in conjunction with the specified conditions in terms of ρ and u.   

 The above non-conservative form and characteristic equations, however, are insuitable for numerical 
solutions by using a finite-volume method. In order to perform space-time integration for flux conservation, we must 
transform the above equations into a conservative form:   

 
t x

∂ ∂
+ =

∂ ∂
U F H  (53) 

where the conservative variables vector ( ), Tuρ ρ=U for mass and x-momentum conservation. The source term H 
on the right hand side of Eq. (53) is due to the contraction/expansion effect of the thin rod.  By Gauss’ theorem, Eq. 
(53) can be recast into an integral form: 
 ( )  where  , , 1, 2T

i i i i id h d f u i
∂Ω Ω

⋅ = Ω = =∫ ∫h s h  (54) 

where Ω is a space-time domain, ∂Ω is the surface of Ω , and if and iu are the ith component of F and U, 
respectively.  Figure 2 shows a schematic of the space-time integration by Eq. (54). 
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r+dr

r

dr

ds
V

S(V)

t 

x 
Figure 2: A schematic of space-time integral of the conservative-form equations. 

 This conservative-form equation is ready for numerical integration provided: (i) the eigenvalues of the the 
Jacobian matrix of the convection terms are real, i.e., the left hand side of (53)  remains to be hyperbolic, and (ii) the 
source term can be straightforwardly integrated as a part of the overall space-time flux conservation. However, the 
conservative-form equations are not unique. In the present paper, we use the following formulation. To proceed, we  
substitute Eq. (22) into Eq. (31) and rewrite Eqs. (30) and (31) into the form of Eq. (53). The flux vector and source 
term vector are 

 1

2 03 1

u
f
f

uu k

µ ρ
λ µ

ρµ ρ
λ µ ρ

 
 +   = =      − −   +   

F , and 
( )

1

2

u
xh

h u
u

x

λ ρ
λ µ

ρλ
λ µ

∂ − + ∂   = =   ∂  −  + ∂ 

H . 

The Jacobian matrix can be obtained by applying the chain rule to the convection term of Eq. (53):  

 
t x t x t x

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = + = + =

∂ ∂ ∂ ∂ ∂ ∂ ∂
U F U F U U UA H

U
 (55) 

 
2 0

2

0

3
2

k
u u

µ
λ µ

ρµ µ
λ µ λ µρ

 
 +∂  = =
 ∂ − + + + 

FA
U

 (56) 

The conservative form of this model is not unique. The one presented here is one of many options. By solving 
( )det 0λ− =A I , we obtain the eigenvaluse of A as 

 
( )

0
1,2 2

3k
u

µρµλ
λ µ λ µ ρ

= ±
+ +

 (57) 

Since these eigenvalues are real, this conservative form hyperbolic, and it could be solved by the CESE method or a 
suitable upwind method. These eigenvalues are artificial and they do not represent the true wave speeds of the 
hyperbolic system. Nevertheless, one has to use these artificial eigenvalues to determine a suitable time increment in 
time-marching calculation such that the CFL constraint is satisfied. The calculated wave speeds will be modulated 
by the source-term effect to render realistic wave speeds in the numerical solutions.  

IV. The Space-Time CESE method 
To solve the above conservative-form equations, we employed the CESE method 25, which is a novel numerical 
framework for hyperbolic conservation law. In the CESE method, separated definitions of Solution Element (SE) 
and Conservation Element (CE) are introduced. In each SE, solutions of unknown variables are assumed continuous 
and a prescribed function is used to represent the profile. In the present calculation, a linear distribution is used. 
Over each CE, the space-time flux in the integral form, Eq.(54), is imposed.  

Fig. 3 shows the space-time mesh and the associated SEs and CEs. Solutions of variables are stored at mesh 
nodes which are denoted by filled circular dots. A staggered mesh is used, and solution variables at neighboring SEs 
leapfrog each other in time-marching. The SE associate with each mesh node is denoted by a yellow rhombus. 
Inside the SE, the solution variables are assumed continuous. Across the interfaces of neighboring SEs, solution 
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discontinuities are allowed. In this arrangement, solution information from on SE to another propagates through the 
oblique interface only in one direction, i.e., toward the future, as denoted by the red arrows. Through this space-time 
staggered mesh, the classical Riemann problem has been avoided. Fig. 3(b) illustrates a rectangular CE, over which 
the space-time flux conservation is imposed. This flux balance provides a relation between the solutions of three 
mesh nodes: ( ) ( ) ( ), ,  1 2, 1 2 ,  and 1 2, 1 2j n j n j n− − + − . If the solutions at time step 1 2n − are known, the flux 

conservation condition would determine the solution at ( ),j n .       

 
(a)                  (b) 

Fig. 3: Schematics of the CESE method in one spatial dimension: (a) zigzagging SEs; (b) integration 
over CE to solve ui and ( )x i

u at the new time level. 

 To proceed, we consider the one-dimensional equations with source terms:  

 m m
m

u f
t x

µ
∂ ∂

+ =
∂ ∂

, m = 1, 2. (58) 

where the source term µm is the function of um. Let x1 = x, x2 = t and ( , )m m mf uh . By using Gauss’ theorem, we 
have 
 

( )
m m

S R R
d dRµ⋅ =∫ ∫h s  (59) 

For any (x, t) ∈ SE (j, n), um (x, t), fm (x, t) and hm (x, t), are approximated by *( , ; , )u x t j n , * ( , ; , )f x t j n , and 
*( , ; , )x t j nh , respectively. By assuming linear distribution in SEs, we have 

 ( )* , ; , ( ) ( ) ( ) ( ) ( )n n n n
m m j mx j j mt ju x t j n u u x x u t t= + − + − . (60) 

Let ( )n
m jf  and ,( )n

m l jf  denote the value of fm and ∂fm/∂ul, m, l = 1, 2, respectively, when um assumes the value of 

( )n
m ju . Let 

 
2

,
1

( ) ( ) ( )n n n
mx j m l j lx j

l

f f u
=
∑ , (61) 

and 

 
2

,
1

( ) ( ) ( )n n n
mt j m l j lt j

l

f f u
=
∑ .  (62) 

Because 

 
2

1

m m l

ll

f f u
x u x=

∂ ∂ ∂
=

∂ ∂ ∂∑ , and 
2

1

m m l

ll

f f u
t u t=

∂ ∂ ∂
=

∂ ∂ ∂∑ , (63) 
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( )n
mx jf  and ( )n

mt jf  can be considered as the numerical analogues of the value of ∂fm/∂x and ∂fm/∂t at (xj, tn), 
respectively. As a result, we assume  
 * ( , ; , ) ( ) ( ) ( ) ( ) ( )n n n n

m m j mx j j mt jf x t j n f f x x f t t= + − + − , (64) 
and 
 * * *( , ; , ) ( ( , ; , ), ( , ; , ))m m mx t j n f x t j n u x t j n=h , (65) 

Note that, by their definitions, for any m = 1, 2,  ( )n
m jf  and ,( )n

m l jf  are functions of ( )n
m ju ; ( )n

mx jf  are functions of 

( )n
m ju  and ( )n

mx ju ; and ( )n
mt jf  are functions of ( )n

m ju  and ( )n
mt ju . Assume that, for any (x, t) ∈ SE (j, n), um = 

* ( , ; , )mu x t j n and fm = * ( , ; , )mf x t j n  satisfy Eq.(58), i.e.,  

 
* *

*( , ; , ) ( , ; , )
( , ; , )m m

m
u x t j n f x t j n

x t j n
t x

µ
∂ ∂

+ =
∂ ∂

 (66) 

According to Eqs. (60) and (64), and further assume that *
mµ  is constant within SE(j, n), i.e., * ( , ; , )m x t j nµ = ( )n

m jµ , 
the above equation is equivalent to 
 ( ) ( ) ( )n n n

mt j mx j m ju f µ= − + . (67) 

Since ( )n
mx jf  are functions of ( )n

m ju  and ( )n
mx ju ; and ( )n

m jµ  are also functions of ( )n
m ju ,  Eq. (67) implies that 

( )n
mt ju  are also functions of ( )n

m ju  and ( )n
mx ju . Thus, the only independent discrete variables needed to be solved 

are ( )n
m ju  and ( )n

mx ju . 
 To proceed, we employ local space-time flux balance over CE(j, n) to solve the unknowns. Refer to Fig. 3(b). 

Assume that *
mu  and *

mxu  at mesh points ( )1 2, 1 2j n− −  and ( )1 2, 1 2j n+ −  are known and used to calculate 

( )n
m ju  and ( )n

mx ju  at the new time level n. By enforcing the flux balance over CE(j, n), i.e.,  

 * *

( ( , )) ( , )
m m

S CE j n CE j n
d dVµ⋅ =∫ ∫h s , (68) 

one obtains  

( ) ( )
4

n n
m j m j

tu µ∆
− =  

 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2
1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

1 ( ) ( ) ( ) ( ) ( ) ( )
2 4 4

n n n n n n
m j m j m j m j m j m j

t tu u s sµ µ− − − − − −
− + − + − +

∆ ∆ + + + + −  
, (69) 

where 
 2( ) ( / 4)( ) ( / )( ) ( / 4 )( )n n n n

m j mx j m j mt js x u t x f t x f= ∆ + ∆ ∆ + ∆ ∆ . (70) 

 Given the values of the marching variables at mesh points ( )1 2, 1 2j n− −  and ( )1 2, 1 2j n+ − , the RHS 

of Eq. (69) can be readily calculated. Since ( )n
m jµ  on the LHS of Eq. (69) is a function of ( )n

m ju , we use Newton’s 

method to solve for ( )n
m ju .  

 To solve (umx)j
n at point (j, n), central differencing is performed: 

 ( ) [( ) ( ) ] / 2n n n
x j x j x ju u u+ −= + , (71) 

where 
 1/ 2( ) ( ) /( / 2)n n n

x j j ju u u x±
±= ± − ∆ , (72) 

 1/ 2 1/ 2
1/ 2 1/ 2 1/ 2( / 2)( )n n n

j j t ju u t u− −
± ± ±= + ∆ . (73) 

For flows with discontinuities, Eq. (71) is replaced by a re-weighting procedure to add artificial damping: 
 ( ) ( ( ) , ( ) ,  )n n n

x j x j x ju W u u α− += , (74) 
where the function W is defined as  
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 ( , , )
x x x x

W x x
x x

α α

α αα + − − +
− +

+ −

+
=

+
, (75) 

and α is an adjustable constant. Usually α = 1 or 2. The above method with CE and SE defined as in Fig. 3 is useful 
for treating the conservation laws with non-stiff source terms. 

 To proceed, we consider the condition when the source term in Eq. (58) is stiff. We first normalize the source 
term and let *1m mµ κ µ= ⋅ , where the order of the magnitude of *

mµ  is comparable with that of mu t∂ ∂  and mf x∂ ∂ . 
Aided by this normalized source term, Eq. (58) becomes  

 *1m m
m

u f
t x

µ
κ

∂ ∂
+ =

∂ ∂
,    for     m = 1, 2. 

The source terms is stiff if 1κ .  In other words, the time scale of the source term is much smaller than that of the 
convection term.  

 In numerical calculations, the magnitude of the source term would directly impact the calculation of ( )n
mt ju , 

Eq.(67), and hence the calculation of ( )n
mt jf , Eq. (62). Essentially, small difference between the value of 1/ 2

1/ 2( )n
m ju −

−  

and 1/ 2
1/ 2( )n

m ju −
+  which will be amplified by the stiffness factor 1 κ , leading to amplified differences 

between 1/ 2
1/ 2( )n

m jµ −
−  and 1/ 2

1/ 2( )n
m jµ −

+ . This difference in turn would lead to the amplified differences between 
1/ 2
1/ 2( )n

mt ju −
−  and 1/ 2

1/ 2( )n
mt ju −

+ , and between 1/ 2
1/ 2( )n

mt jf −
−  and 1/ 2

1/ 2( )n
mt jf −

+ . As a result, Newton’s method would fail to 
converge when solving this stiff relaxation system.  

 Due to the above difficulty, a modification to the original method has been developed to avoid the 
amplification effects. The new treatment was based on redistributing the space-time regions such that the source 
term effect is hinged on the mesh point at the new time level.  Fig. 4 shows the new layout of CEs and SEs 
associated with mesh nodes. Shown in Fig. 4(b), the new SE is constituted by the rectangle ABB'A', the line 
segments QQ″, and the immediate neighborhood of QQ″. The CE is rectangle ABB'A'. Note that Q, Q' and Q″ share 
the same spatial projection, so do A and A', and B and B'. The superscript prime and quotation mark denote the time 
level n-1/2 and n+1/2, respectively. Besides the SE(j, n), two more neighboring SEs are also shown to illustrate the 
belonging (to SEs) of the three parts of CE(j, n).  

 With this new construction of SEs, we proceed to perform integration as in the original CESE method, and 
have Eqs. (60), (64), and (65). However, the evaluation of 1/ 2

1/ 2( )n
mt ju −

−  and 1/ 2
1/ 2( )n

mt ju −
+  differs from the original 

method by simply using 
 1/ 2 1/ 2

1/ 2 1/ 2( ) ( )n n
mt j mx ju f− −

± ±= − , (76) 
and no source term effect is included. Note that these temporal derivatives are used only along the line segment 
protruding from the top of AA’B’B. The area of the line segment is zero due to the geometry of new SEs. This layout 
excludes the influence of the stiff source term from mesh nodes at time level 1 2n −  in the overall space-time flux 
conservation. 

 
(a)              (b) 

Fig. 4: Schematics of the modified CESE method in one spatial dimension: (a) the staggered space-time 
mesh; (b) SE (j, n), shown as the yellow part, and CE (j, n). 
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 Therefore, in the calculation of the overall flux balance over CE(j, n), i.e., Eq.(68), the integration of the 
source term is based on the flow properties at the mesh point (j, n), and one obtains 

 1/ 2 1/ 2 1/ 2 1/ 2
1/ 2 1/ 2 1/ 2 1/ 2

1( ) ( ) ( ) ( ) ( ) ( )
2 2

n n n n n n
m j m j m j m j m j m j

tu u u s sµ − − − −
− + − +

∆  − = + + −  , (77) 

where  
 2( ) ( / 4)( ) ( / )( ) ( / 4 )( )n n n n

m j mx j m j mt js x u t x f t x f= ∆ + ∆ ∆ + ∆ ∆ . (78) 

Similar to that in the original method, for any m = 1, 2, ( )n
m jf  and ( )n

m jµ  are functions of ( )n
m ju ; ( )n

mt jf  is a 

function of ( )n
m jµ  and ( )n

mx ju . Thus, given the values of the marching variables at t = tn-1/2, Eq. (77) is a nonlinear 

equation of ( )n
m jµ . Again, Newton’s iteration method is used. The algorithm for solving ( )n

mx ju  in the modified 
method remains unchanged, i.e., by Eqs. (71)-(74). 

 Based on the above treatment, we avoid the amplification effect of the stiff source term in numerical 
calculations and thus stabilize the iterative procedure of Newton’s method. Essentially, the effect of the source-term 
calculation on the flow properties from the time level n − 1/2 was not involved. The layout of the modified SEs 
helps to eliminate the stiffness problem. Nevertheless, the union of all the CEs still covers the whole space-time 
domain without overlapping and the source-term effect would satisfy the local and global space-time flux balance in 
an integral sense. 

V. Results and Discussions 
In the present paper, we consider elastic longitudinal wave propagating in an aluminum rod. For 
aluminum, 3

0 2700 /kg mρ = , 60.5GPaλ = , 26GPaµ = , 70E GPa= , and 77k GPa= . The length of the rod 
1.0L m= . To be consistent with the forced boundary condition on the right end of the rod, Eq. (7), we assume that 

the displacement applied at the right end of rod is a cosine function of time:  
 ( )cos 2Ad C ftπ= − ⋅  (79) 
where d is the displacement, AC  is the amplitude of the imposed vibrations, and f is the frequency of the imposed 
vibrations. In the present calculations, 50AC mµ= and 20f kHz= . Corresponding to the above vibrations, the 
velocity at right boundary is 
 ( )2 sin 2B Au f C ftπ π= ⋅ ⋅  (80) 
We note that the amplitude of stress at boundary Bσ  in stress boundary Eq. (7) must be provided to obtain the 
analytical solution of the second order wave equation, Eq. (12).  To this end, we first use the CESE method to solve 
the conservative-form first-order equations, i.e., Eq. (55) to obtain Bσ , which is then used to obtain the analytical 
solution, Eq.(12), of the second-order linear wave equation.  

   
(a)            (b)  

Fig. 5: (a) The stress variation at the vibrating end of the rod and (b) the speed of sound profile at 
t=0.312 ms calculated by the CESE method.  
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 By solving the nonlinear equations, Eq. (55), by the CESE method, we obtained the dynamics stress 
boundary condition and speed of sound.  (a)            (b)  

Fig. 5(a) shows the time history of Bσ . About 6 cycles of vibrations were calculated. The solution 
shown in (a)            (b)  

Fig. 5(a) reveals that at a high frequency, imposed vibrations even with a small amplitude could 
generate higher stresses, which then propagate in the specimen at the speed of sound. (a)     
       (b)  

Fig. 5(b) shows a snapshot of the speed of sound profile at t = 0.312 ms. At this time, the wave initiated 
from the right end of the rod has reached and rebounded from the left end of the rod. Due to wave 
reflection, the wave amplitude increases. Since we solve the first order nonlinear equations, the speed 
of sound, which is a part of the eigenvalues, depends on the instantaneous solution of the primary 
unknowns ( ), Tuρ ρ=U .  The initial speed of sound at 5092 m/s is denoted by a blue line. Because the 
density is not a constant in this process, the speed of sound shown in (a)          
  (b)  

Fig. 5(b) presents the fluctuation around the initial value at 5092m/s.  
   

   
(a)                 (b)  

Fig. 6: The snapshot (t=0.312ms) of stress wave propagation generated by (a) numerical solution of 
nonlinear wave model Eq. (55) and (b) theoretic solution of linear wave Eq. (12). 

 Fig. 6 shows the side-by-side comparison of the normal stress between (a) the CESE solution of Eq. (55), and 
(b) the analytical solution of Eq. (12). Fig. 6 demonstrate that for linear elastic wave problem, the nonlinear wave 
model, Eq.(55), solved by the CESE method can faithfully catch the linear elastic waves. These figures also show 
that the magnitude of the stress wave doubles after wave reflection from the left end of the rod. Fig. 7 shows the 
snapshot of density profile of the thin rod at the same time. Because of the nonlinear wave model, Eq.(55), density is 
not a constant. As wave propagates, density at a spatial location would fluctuate accordingly. 
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Fig. 7: A snapshot (t=0.312ms) of density profile predicted by two-equations model, Eq. (55).  

   
 The capability of the CESE method in capturing stress waves could be assessed by the number of grid points 

needed for resolving the propagating waves. Fig. 8 shows snapshots of profiles of normal stress at t = 0.312 ms. 
Three sets of solutions using 301, 151, and 75 grid points. When 75 mesh nodes are used, dissipation effect can be 
observed as compared to the solutions by using 151 and 301 mesh nodes. Although not shown, further mesh 
refinement does change the solution.  In all three cases, no obvious dispersive effect can be discerned. 
Approximately, the one meter aluminum rod contents 3 cycles of wave.  Therefore, we need at least about 25 nodes 
per wave length to resolve the stress wave.  

 
Fig. 8: Snapshots of the normal stress profiles at t = 0.312 ms by using 301, 151, and 75 grid points. 

VI. Conclusions 
The present paper reported detailed analyses of the first-order model equations and its eigen-system for nonlinear 
elastic stress waves in a thin rod. Based on the conservation laws of mass and momentum, model equations in non-
conservative form, characteristic form, and conservative form were derived. Analytical solutions of the eigenvalues, 
eigenvector matrices, and the Riemann invariants along characteristic lines were provided. Due to the 
contraction/expansion effect of the cross section area of the thin rod, the derived model equations were quite 
complex. In particular, when put into a conservative form, a stiff source term appeared on the right hand side of the 
first-order hyperbolic equations. A suitable conservative form for numerical solutions was then solved by the space-
time CESE method. The treatment for stiff source term was designed by re-distributing the space-time areas of SE 
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such that the amplification effect by the stiff source term was avoided and the numerical integration was stabilized. 
For linear waves, favorable comparison between the numerical results and the classical solutions of the second-order 
wave equation was found. The result here is a steppingstone for the further development of the model equations and 
the CESE method for stress waves of large material deformation.  

Appendix 
This appendix provides the derivation of the analytical solution of the second order linear wave equation for linear 
elastic wave in a thin rod. The process here is adapted from that of  Miklowitz.36 To solve Eqs. (9) and (10), we first 
solve the eigenvalue problem defined by the following differential equation 

 
( ) ( )2 ,     0a l

dH xd EA m H x x L
dx dx

ϖ
 

− = < < 
  

 (A.1) 

With the boundary conditions 

 ( ) ( )
0 0,     0a x L

dH x
H EA

dx == =  (A.2) 

The solution consist of the eigenvalues 2
rϖ  (r = 1,2,…) and the eigen-functions ( )rH x , which are mutually 

orthogonal and normalized. Thus, the eigen-functions satisfy the following ortho-normal condition:  

 ( ) ( )
0

,    , 1, 2,...
L

l r s rsm H x H x dx r sδ= =∫  (A.3) 

and 

 ( ) ( ) 2

0
,    , 1,2,...

L r
s a r rs

dH xdH x EA dx r s
dx dx

ϖ δ
 

− = = 
  

∫  (A.4) 

The solution is assumed in the form as 

 ( ) ( ) ( )
1

, ,    1,2,...r r
r

h x t H x t rη
∞

=

= =∑  (A.5) 

Substituting Eq. (A.5) in to Eq. (9), multiplying by ( )sH x , integrating over the length of the rod, and considering 
the ortho-normal condition, i.e.,  (A.3) and (A.4), we have the modal equations 
 ( ) ( ) ( )2 ,    1, 2,...r r r rt t N t rη ϖ η+ = =  (A.6) 
where 

 ( ) ( ) ( ) ( ) ( ) ( )
0

,    1, 2,...
L

r r rN t H x F t x L dx H L F t rδ= − = =∫  (A.7) 

are the modal forces.  The solution of the modal equations can be written in the form of the convolution integrals 

 ( ) ( ) ( ) ( ) ( ) ( )
0 0

1 sin sin ,    1, 2,...
t tr

r r r r
r r

H L
t N t d F t d rη τ ϖ τ τ τ ϖ τ τ

ϖ ϖ
= − = − =∫ ∫  (A.8) 

The displacement response of the rod to the boundary force is described by the Eqs. (A.5) and (A.7). For the 
uniform rod shown in Figure 1, the eigenvalue problem is governed by the following differential equation:  

 
( ) ( )

2 2
2 2

2 0,     0 ,    l

a

d H x m
H x x L

EAdx
ϖ

β β+ = < < =  (A.9) 

with the boundary conditions 

 ( ) ( )
0 0,     0x L

dH x
H

dx == =  (A.10) 

The ortho-normal modes in the solution of this eigenvalue problem are 

 ( ) ( )2 12 sin ,    1,2,...
2r

l

r x
H x r

m L L
π −

= =  
 

 (A.11) 

The natural frequencies are 
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( )

2

2 1
,    1, 2,...

2
a

r
l

r EA
r

m L

π
ϖ

−
= =  (A.12) 

When we apply a specific force boundary condition as Eq.(A.7), we could calculate the response of the rod by 
following steps.  Aided by Eqs. (A.8), (A.11) and (A.12), we have 
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Substituting Eqs.(A.11) and (A.13) into Eq.(A.5), we have the displacement response of the rod to the applied force 
by Eq. (A.7).  We then use the known displacement response to calculate the stress:  
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where  
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In this derivation, we use 

 l
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